Fábrica de Arduino


Los chicos de la Maker Fire durante la realización de la misma en Roma han hecho un tour por la fábrica de Arduino (sitúada en Ivrea – Italia), en este vídeo podemos ver el funcionamiento de la misma explicada de la mano de Davide Gomba.

Espero que os guste!!

Si te ha servido de ayuda esta entrada, puedes realizar un donativo para agradecer el tiempo que dedico al blog y ayudar a hacer más entradas.

donativo_paypal

Arduino Pinout y conexiones básicas


En mis visitas diarias a otros blogs he encontrado una buena información en www.pighixxx.com y www.akafugu.jp que creo que puede ser de ayuda a toda aquella gente que comienza en esto de la electrónica y en concreto en el tema de Arduino. Se trata de unos documentos que he recopilado en un único pdf para que sea más cómodo su uso, en los que aparecen los distintos pinouts de las placas Arduino más comunes.

Arduino uno pinout

También podéis encontrar una hoja donde aparecen los pinouts más comunes de algunos de los componentes electrónicos que normalmente usamos en nuestros proyectos.

Componentes electrónicos pinout

Así como unas magnifícas páginas en las que se pueden ver las conexiones básicas de distintos componentes a nuestro Arduino y que puede ser de una muy buena ayuda tanto para aquellos que están empezando con Arduino o otro microcontrolador, como para aquellas personas que ya están curtidas en estos temas.

conexiones basicas arduino

Sin más, os dejo el enlace al documento pdf en el que vais a encontrar todo este estupendo material de ayuda:
http://www.mediafire.com/download/zrssl27tiasi17r/Arduino_Pinout_y_Conexiones_Basicas.pdf

Si te ha servido de ayuda esta entrada, puedes realizar un donativo para agradecer el tiempo que dedico al blog y ayudar a hacer más entradas.

donativo_paypal

LCD I2C y Arduino


A veces cuando estás montando un proyecto, puede que te quedes corto con los pines de tu tarjeta Arduino y necesites optimizar las conexiones hardware de tu diseño. En esta entrada vamos a ver como poder obtener unos pines más pasando de emplear una lcd conectada en modo paralelo (empleamos 6 pines) a una lcd que emplea el protocolo de comunicación I2C (empleamos 2 pines analógicos en el caso del Uno, pines digitales 2 y 3 para el Leonardo y pines 20 y 21 digitales en el caso del Mega). Yo me he comprado un adaptador bastante económico a través de ebay que va soldado a los pines de nuestra pantalla lcd, aunque también se venden los módulos y pantalla juntos. Os dejo unas fotos para que podáis ver el módulo (hay muchos en el mercado pero que funcionan exactamente igual de bien):

Pantalla y Adaptador

LCD I2C Adaptador

Como podéis ver este módulo trae cuatro pines que a partir de ahora son los que vamos a usar y que son los siguientes: GND, VCC, SDA y SCL. Además trae un potenciometro gracias al cual podremos regular el brillo de la pantalla (para poder ver correctamente los caracteres en ella) y un jumper para activar o desactivar el backlight (luz) de la pantalla (también se puede activar o desactivar por software).

La conexión a nuestras placas es bastante sencilla ya que solo son 4 cables, aunque hay que tener en cuenta la placa Arduino que vayamos a emplear ya que como he dicho antes cambia la disposición de estos pines, por tanto para la tarjeta Arduino Uno emplearemos los pines A4(SDA) y A5(SCL), para la Arduino Leonardo emplearemos los pines SDA y SCL y para la Arduino Mega emplearemos D20(SDA) y D21(SCL). Os dejo unos ejemplos de conexión:

Conexiones Modulo I2C LCD ARDUINO

Os dejo un código de ejemplo:

/* Sketch de ejemplo para testear el módulo adaptador paralelo a I2C de pantalla LCD
 Escrito por YWROBOT, modificado por Regata para www.tallerarduino.wordpress.com*/
 
#include <Wire.h>
#include <LiquidCrystal_I2C.h>

//Comprobamos la version de nuestro IDE de Arduino y dependiendo de si es una version superior a la 1 ejecutamos distintos comandos
//esto es necesario ya que para versiones anteriores se empleaba el comando print para imprimir caracteres y ahora se emplea el comando write
#if defined(ARDUINO) && ARDUINO >= 100
#define printByte(args)  write(args);
#else
#define printByte(args)  print(args,BYTE);
#endif

//Creamos diferentes caracteres
uint8_t bell[8]  = {0x4,0xe,0xe,0xe,0x1f,0x0,0x4};
uint8_t note[8]  = {0x2,0x3,0x2,0xe,0x1e,0xc,0x0};
uint8_t clock[8] = {0x0,0xe,0x15,0x17,0x11,0xe,0x0};
uint8_t heart[8] = {0x0,0xa,0x1f,0x1f,0xe,0x4,0x0};
uint8_t duck[8]  = {0x0,0xc,0x1d,0xf,0xf,0x6,0x0};
uint8_t check[8] = {0x0,0x1,0x3,0x16,0x1c,0x8,0x0};
uint8_t cross[8] = {0x0,0x1b,0xe,0x4,0xe,0x1b,0x0};
uint8_t retarrow[8] = {	0x1,0x1,0x5,0x9,0x1f,0x8,0x4};
  
LiquidCrystal_I2C lcd(0x20,20,4);  // definimos la direccion de la pantalla LCD a 0x20 e indicamos el numero de columnas y filas de la pantalla

void setup()
{
  lcd.init();  //Iniciamos la pantalla
  lcd.backlight();  //Activamos el backligt
  //Le decimos a la pantalla que cree los distintos caracteres arriba definidos
  lcd.createChar(0, bell);
  lcd.createChar(1, note);
  lcd.createChar(2, clock);
  lcd.createChar(3, heart);
  lcd.createChar(4, duck);
  lcd.createChar(5, check);
  lcd.createChar(6, cross);
  lcd.createChar(7, retarrow);
  lcd.home();  //Posicionamos el cursor al inicio
  lcd.print("Visitanos en:"); //Imprimimos el mensaje
  lcd.setCursor(0, 1);  //Nos posicionamos en la primera columna de la fila 2
  lcd.print("www.tallerarduino.");  //Imprimimos el mensaje
  lcd.setCursor(7, 2);  //Nos posicionamos en la quintaa columna de la fila 3
  lcd.print("wordpress.com");  //Imprimimos el mensaje
  lcd.setCursor(4, 3);  //Nos posicionamos en la cuarta columa de la fila 4
  lcd.print("We ");
  lcd.printByte(3);
  lcd.print(" Arduino!");
  delay(10000);
  displayKeyCodes();  //Llamamos a la funcion displayKeyCodes
}

//Muestra todos los caracteres
void displayKeyCodes(void) 
{
  int i = 0;
  while (1) 
  {
    lcd.clear();  //Borramos la pantalla
    lcd.setCursor(0,1);  //Nos posicionamos en la primera columna de la segunda fila
    //Mostramos los distintos caractares
    lcd.print("Codigos: 0x"); 
    lcd.print(i, HEX);
    lcd.print("-0x"); 
    lcd.print(i+16, HEX);
    lcd.setCursor(2, 2);  
    for (int j=0; j<16; j++)
      lcd.printByte(i+j);
    i+=16;
    delay(4000);
  }
}

void loop()
{
}

Aquí podéis ver un video del funcionamiento del programa sobre la pantalla LCD:

Y por último os dejo los archivos, donde viene el skecth, la librería para usar este módulo con vuestra pantalla LCD y el esquema de conexionado en Fritzing: http://www.mediafire.com/?naoloa8um1xfs0m

Si te ha servido de ayuda esta entrada, puedes realizar un donativo para agradecer el tiempo que dedico al blog y ayudar a hacer más entradas.

donativo_paypal

Arduino Yún: un Arduino con wifi


Hace unos días Massimo Banzi ha presentado, en la Maker Faire Bay Area, la placa Arduino Yún (la primera placa de una familia de productos con wifi que combinan Arduino con sistemas Linux). Realizada en colaboración con Dog Hunter (compañía con una extensa experiencia con linux), esta placa adopta la distribución linux Linino.

Arduino Yun top

Arduino Yun bottom

Básicamente la placa Arduino Yún es una combinación entre una placa Arduino Leonardo y un sistema wifi MIPS GNU/Linux basado en OpenWRT con la distribución Linino instalada. El sistema está basado en el chip ATMega324 (el que incorpora el Arduino Leonardo) y un Atheros AR9331.

Arduino Yun esquema

Esta placa además de ser programada a través del puerto USB que trae integrado también se puede programar vía Wifi.

La verdad es que se trata de una placa bastante interesante para nuestros proyectos, y a un precio bastante asequible, que será de 69$ más impuestos.

Podéis obtener más información aquí.

Si te ha servido de ayuda esta entrada, puedes realizar un donativo para agradecer el tiempo que dedico al blog y ayudar a hacer más entradas.

donativo_paypal

pinguino kit: programa pinguino gráficamente


Pinguino Kit (actualmente en la versión v1.1) es un entorno que permite programar las placas Pinguino Pic gráficamente. Esta herramienta pretende convertirse en una herramienta de enseñanza de programación y electrónica digital básica, centrada en estas placas. Os dejo una captura del IDE de Pinguino Kit y un vídeo en el que podéis ver un poco su funcionamiento y el método para realizar programas.

IDE Pinguino Kit

Podéis encontrar más información en los siguientes enlaces: Página del proyecto Pinguino Kit y zona de descarga e instalación del IDE de Pinguino Kit.

Si te ha servido de ayuda esta entrada, puedes realizar un donativo para agradecer el tiempo que dedico al blog y ayudar a hacer más entradas.

donativo_paypal

Arduino Robot: Lottie Lemon


Nuevo robot educativo gracias a la colaboración entre la Asociación de Robótica Educativa Complubot y del equipo de Arduino. Este robot, llamado Lottie Lemon, presenta dos procesadores ATMEGA32U4 (uno en cada una de sus placas) y se encargan tanto de controlar los motores que se encuentran en la placa inferior como de los sensores que se encuentran en la placa superior. La programación de este robot es similar a la programación de un Arduino Leonardo. Os dejo unas fotos de está maravilla educativa en el tema de la robótica.

ArduinoRobot

Robot Lottie Lemon

LottieLemon_figure_hardware_top

LottieLemon_figure_hardware_bottom_back

Para más información podéis visitar los siguientes enlaces: Página oficial Arduino Robot, primeros pasos con Arduino Robot y Librerías Arduino Robot.

Si te ha servido de ayuda esta entrada, puedes realizar un donativo para agradecer el tiempo que dedico al blog y ayudar a hacer más entradas.

donativo_paypal

sensor de temperatura tmp36 y arduino


En esta nueva entrada vamos a ver como usar un sensor de temperatura analógico (emplea uno de los pines analógicos) modelo TMP36 con nuestra placa Arduino, dicho sensor es de la casa Analog Devices y permite realizar unas medidas de temperatura bastante precisas y a un muy reducido coste.

Foto Sensor TMP 36 GZ

Como podéis ver el sensor empleado es de tipo TO-92 (encapsulado como el DS18B20 o el de algunos transistores). Además se caracteriza por ser un sensor que es muy empleado para realizar medidas de temperatura y es muy sencillo de emplear (no hacen falta librerías para su uso). Es un sensor que se puede alimentar entre un rango de voltaje que va desde los 2.7V hasta los 5.5V, viene calibrado directamente en grados centígrados (ºC), presenta un factor de escala lineal de 10 mV/ºC (esto es la relación entre el cambio en la señal de salida y el cambio en la señal de la medida, es decir, cada 10 mV aumenta 1 ºC). Las características generales son:

Caracteristicas TMP36

Aquí os dejo un enlace para que podáis descargaros el datasheet del sensor de temperatura, el esquema en fritzing de conexionado y el sketch de Arduino: http://www.mediafire.com/?c26yr7fk48my0fw

Os pongo el esquema para la conexión del sensor a Arduino:

Conexion Fritzing TMP36

Aquí tenéis un código de ejemplo, de como obtener tanto el voltaje leído por el sensor, como los grados centígrados y los grados fahrenheit, además de mostrar los valores máximos y mínimos para cada una de las medidas mencionadas.

/* Sketch de ejemplo para testear el sensor de temperatura analógico TMP36
 Escrito por Regata para www.tallerarduino.wordpress.com

 MODO DE CONEXIÓN DEL SENSOR

 Conectamos el pin 1 que corresponde a la alimentación del sensor con los 5V del Arduino
 Conectamos el pin 2 que corresponde al pin de datos del sensor con cualquier pin analógico del Arduino
 Conectamos el pin 3 que corresponde al pin de masa (GND) del sensor con el pin GND del Arduino

*/

int temp = 5;  //Pin analógico A5 del Arduino donde conectaremos el pin de datos del sensor TMP36
float maxC = 0, minC = 100, maxF = 0, minF = 500, maxV = 0, minV = 5;  //Variables para ir comprobando maximos y minimos

void setup()
{
  Serial.begin(9600);  //Iniciamos comunicación serie con el Arduino para ver los resultados del sensor
                        //a través de la consola serie del IDE de Arduino
}

void loop()
{
  float voltaje, gradosC, gradosF;  //Declaramos estas variables tipo float para guardar los valores de lectura
                                    //del sensor, así como las conversiones a realizar para convertir a grados
                                    //centígrados y a grados Fahrenheit
                                    
  voltaje = analogRead(5) * 0.004882814;  //Con esta operación lo que hacemos es convertir el valor que nos devuelve
                                           //el analogRead(5) que va a estar comprendido entre 0 y 1023 a un valor
                                           //comprendido entre los 0.0 y los 5.0 voltios
                                           
  gradosC = (voltaje - 0.5) * 100.0;  //Gracias a esta fórmula que viene en el datasheet del sensor podemos convertir
                                       //el valor del voltaje a grados centigrados
                                       
  gradosF = ((voltaje - 0.5) * 100.0) * (9.0/5.0) + 32.0;  //Gracias a esta fórmula que viene en el datasheet del sensor podemos convertir
                                                           //el valor del voltaje a grados Fahrenheit
                                                           
  //Mostramos mensaje con valores actuales de humedad y temperatura, asi como maximos y minimos de cada uno de ellos
  Serial.print("Medidas actuales\n");
  Serial.print("C: "); 
  Serial.print(gradosC);
  Serial.print("\tF: "); 
  Serial.print(gradosF);
  Serial.print("\tV: "); 
  Serial.print(voltaje);
  //Comprobacion de maximos y minimos de humedad y temperatura
  if (maxC < gradosC)
    maxC = gradosC;
  if (gradosC < minC)
    minC = gradosC;
  if (maxF < gradosF)
    maxF = gradosF;
  if (gradosF < minF)
    minF = gradosF;
  if (maxV < voltaje)
    maxV = voltaje;
  if (voltaje < minV)
    minV = voltaje;
  Serial.print("\nMedidas maximas\n");
  Serial.print("C: "); 
  Serial.print(maxC);
  Serial.print("\tF: "); 
  Serial.print(maxF);
  Serial.print("\tV: "); 
  Serial.print(maxV);
  Serial.print("\nMedidas minimas\n");
  Serial.print("C: "); 
  Serial.print(minC);
  Serial.print("\tF: "); 
  Serial.print(minF);
  Serial.print("\tV: "); 
  Serial.print(minV);
  Serial.print("\n\n");
  delay(2000);  //Usamos un retardo de 2 segundos entre lectura y lectura  
}

La salida que obtenemos a través de la consola serie del IDE de Arduino es la siguiente:

Muestra de datos TMP36

Espero que os sirva de ayuda para vuestros proyectos!!

Si te ha servido de ayuda esta entrada, puedes realizar un donativo para agradecer el tiempo que dedico al blog y ayudar a hacer más entradas.

donativo_paypal

Arduino y Pinguino PIC en particular Electrónica en general

A %d blogueros les gusta esto: